A Dark Force for Baryons

Luca Vecchi

Based on 1107.2666 with M. Graesser and I. Shoemaker

(LANL)

Motivations

Facts:

- Baryonic and dark matter are stable
- They have comparable abundances ($ho_{\mathrm{DM}} \approx 5 \,
 ho_{\mathrm{B}}$)

Is there a fundamental, dynamical relation between baryonic and dark matter?

Outline

- 1 Why is the proton stable?
 - Proton stability requires weak-scale DM
 - A common origin for visible and dark matter
- 2 Constraining the baryonic dark force
 - Collider bounds
 - Direct detection bounds
- 3 Conclusions

Why is the proton stable?

• Within the SM the proton is stable because of an **accidental**, anomalous symmetry $U(1)_B$ of the renormalizable formulation. Generic BSM physics triggers proton decay (SUSY)

Dynamical explanation:

• Proton decay can be avoided (at any order in perturbation theory and beyond the ren. level) in theories in which $U(1)_B$ is embedded into a local symmetry, e.g. $U(1)_{B_{gauge}}$ [Dynamical condition]

Indeed, $\mathcal{L}_{p-decay} = \Psi_p \mathcal{O}$, with Ψ_p the proton interpolating field, can be avoided provided $1 + B_{gauge}(\mathcal{O}) \neq 0$

[Example: SUSY without R-parity]

¹Murayama and Carone '95

Proton stability \Leftrightarrow DM

- New chiral fermions are required to cancel the anomalies [analogy: the leptons in the SM allow you to define B-L. However, B-L does not forbid $\mathcal{L}_{p-decay}=\Psi_p L$, with $\Psi_p=QQQ$: a new symmetry, and new chiral fields, are required!]
- Technically, this implies the existence of stable BSM chiral particles with their own anomalous symmetry $U(1)_{B_{dark}}$:

$$B_{\mathsf{gauge}} = B - B_{\mathsf{dark}} + \dots \tag{1}$$

- [... here stands for additional, vectorlike (nonchiral) terms]
- The lightest SM singlet field(s) carrying B_{dark} will be the dark matter

Consequences:

- i) The DM arises as a consequence of proton stability
- ii) The DM is at/below the weak scale[it is the lightest particle of an EW chiral sector]
- iii) Both baryons and DM will feel a new "baryonic/dark" force, e.g. $U(1)_{B_{gauge}}$ [B, $B_{dark} \subset B_{gauge}$]

. . .

. . .

iv) $B - B_{dark}$ appears as an accidental, exact **global** symmetry [after all, B and B_{dark} must be there to stabilize p and X...]

Baryogenesis ($\eta_B \neq 0$) requires $\eta_{B_{dark}} \neq 0$: baryons and DM are asymmetric, with comparable primordial asymmetries and weak scale masses: ²

DM and baryons have comparable abundances $\rho \sim m\eta$ $[\rho_{DM} \sim 5\rho_B$ if $m_X < {\rm few} \times 10$ GeV]

²D. B. Kaplan '92

Phenomenology

At low energies these models are described by:

- the SM Lagrangian with gauged baryon number [universal charges: no FCNC]
- the dark/baryonic gauge boson Z_B [with, say, O(1) GeV $\lesssim m_B \lesssim O(100)$ GeV !!!]
- a weak-scale DM field X (here a Dirac fermion) with generic coupling to Z_B:

$$D^{\mu}X = [\partial^{\mu} + ig_B(q_V + q_A\gamma^5)Z_B^{\mu}]X \tag{2}$$

ullet kinetic mixing [we assumed ${
m Tr}(B_{gauge}Y)=0$ so $c_Z\sim 10^{-2}$]

$$\frac{c_Z}{2}g_B Z_{\mu\nu} Z_B^{\mu\nu} \tag{3}$$

Signatures

- 1 corrections to hadronic processes $[Z_B \text{ much less constrained than a } Z' \text{ coupled to leptons}]$
- 2 missing energy [leads to the strongest bounds (Υ , monojet+MET, direct det. exp.)]

B-factories+LEP

 $\Upsilon \rightarrow$ nothing (or $\Upsilon \rightarrow$ hadrons) and $Z \rightarrow$ hadrons

Monojet+MET (Tevatron) for $q_V = 1$

$$p\overline{p} \to j + X\overline{X}$$
 (ATLAS improves the bounds by a factor $\sim 1.5 - 2$!!!)

Monojet+MET (Tevatron) for $q_A = 1$

Direct detection

If $X\overline{X} \to Z_B^* \to q\overline{q}$ is the dominant annihilation mode:

• $q_V \neq 0$

$$\sigma_{SI} \sim \frac{\mu^2}{\pi} \left(q_V \frac{g_B^2}{m_B^2} \right)^2 \tag{4}$$

the allowed parameter space lies below the current threshold $(m_X \le 1-2 \text{ GeV})$

• $q_V = 0$

$$\frac{d\sigma_{SI}}{dE_R} \propto \left(q_A \frac{g_B^2}{m_P^2}\right)^2 \left[O(v^2) + O(q^2/\mu_N^2)\right] \tag{5}$$

the signal is below the current bounds for any m_X

Conclusions

- I proposed a *dynamical framework* to protect proton stability. It applies to generic extensions of the SM (SUSY)
- A connection between proton stability and DM naturally arises (the DM has weak scale mass and is asymmetric)
- The signatures are not "clean" (hadronic processes and ME), such that masses down to the GeV scale and coupling of weak magnitude are not excluded!
- (Assuming that Z_B exchange saturates $DM \overline{DM}$ annihilat.) the allowed parameter space
 - for $q_V \neq 0$ is confined to $m_X \lesssim 1-2$ GeV (direct det.)
 - for $q_V = 0$ is still remarkably large

Thank You

Luca Vecchi